پیشگامان صنعت و ایمنی پرگاس PISHGAMAN SANAAT & IMENI PERGAS

طراح، مشاور و مجری سیستمهای ایمنی و تاسیساتی

دارای صلاحیت سازمان آتشنشانی تهران اخذ تاییدیه آتشنشانی

تهران . خیابان سعدی شمالی . خیابان شهید مرادی نور . پلاک ۳۱ . واحد ۱

WWW.PERGAS-CO.IR

INFO@PERGAS-CO.IR

 \square

مشاوره و طراحی

بوستر پمـپ هـای آبرسـانے بوستر پمپ های آتش نشانے در کــلاس هـای S3–S2–S1 تابلوفرمان اگزاست و تخلیہ دود

توليد

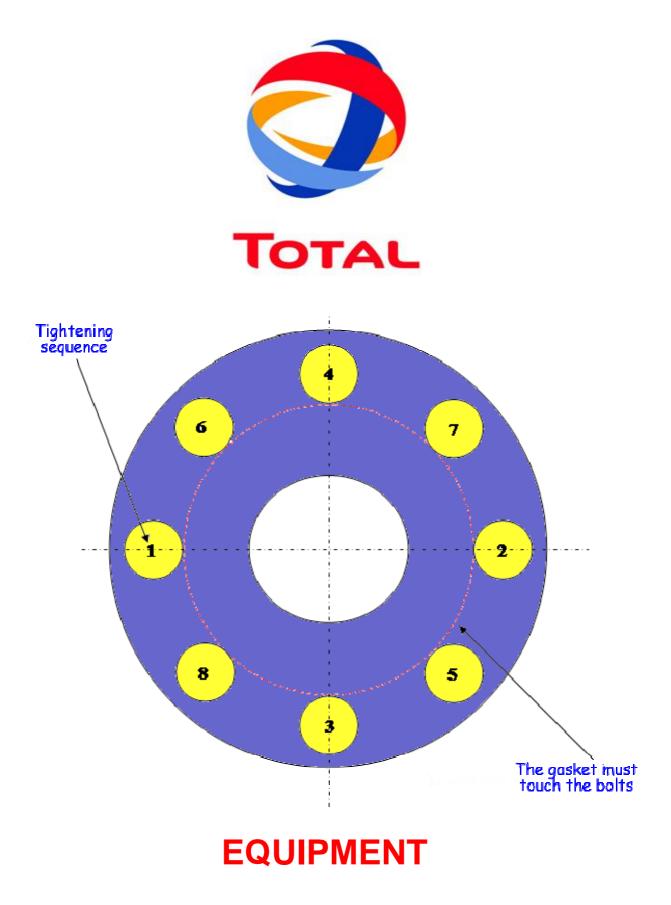
بوستر پمـپ هـای آبرسـانے بوستر پمپ های آتش نشانے در کــلاس هـای S1–S2–S3 تابلوفرمان اگزاست و تخلیہ دود

آموزش

تاسیسات مکانیکی نرم افـزار فنـی و مهـندسی اسـتــخر . ســونا . جــکوزی سـیـســتم هـای پـمـپـاژ سرمایش و حّرمایش موتورخانه

ايمنى

سیستم های پمپاژ اطفاء حریق اعلان حریق معماری تهویه و تخلیه دود


اجرا

تاسـیـسات مکـانیکے تاسـیسات الـکـتریکے اطفا حریق و اعلام حریق تھو یـه و تخلیـه دو د

فروش

PERGAS PISHGAMAN SANAAT & IMENI

تجهیزات اعلام حریق تجهیزات اطفاء حریق تاسـیسات مـوتورخانه سیـستم هـای پـمپاژ

PIPING

TRAINING MANUAL Course EXP-PR-EQ040 Revision 0.1

EQUIPMENT

PIPING

SUMMARY

1. OBJECTIVES	4
2. THE FUNCTIONS OF PIPING	5
2.1. INTRODUCTION	
2.2. PIPING NETWORK	-
2.3. PIPES	
2.4. FLANGES	
2.5. GASKETS	
2.6. BLINDS	
2.7. EXERCISES	
3. PIPING COMPONENTS	
3.1. TUBES OR PIPES	
3.1.1. Characteristics	
3.1.2. The various types	
3.1.3. The various classes	
3.2. FLANGES	
3.2.1. Various flanges	
3.2.1.1. Various types of flanges	
3.2.1.2. The various types of faces	
3.2.1.3. The various classes	
3.2.2. Characteristics	
3.2.2.1. American standards	
3.2.2.2. The French standards AFNOR	
3.2.3. The various types of assembling	
3.2.4. Tightening the flanges	
3.2.4.1. Tightening torque	
3.2.4.2. Tools for tightening by hydraulic tensioning	
3.2.4.3. Installing a new gasket	
3.2.5. The main fittings used	
3.3. GASKETS	30
3.3.1. The various types	30
3.3.1.1. Soft gaskets	30
3.3.1.2. Metallic gaskets	32
3.3.1.3. The metal-elastomer gaskets	33
3.3.2. Using gaskets	
3.4. BLINDS	
3.4.1. The various types	36
3.4.1.1. Flush joints	36
3.4.1.2. The reversible blinds	36
3.4.1.3. Blind flanges	37
3.4.2. Gasket brackets	38

3.5. ADVANTAGES AND DRAWBACKS OF THE VARIOUS TYPES	40
3.5.1. Carbon steel	40
3.5.2. Stainless steel	40
3.5.3. Synthetic materials	
3.6. EXERCISES	41
4. REPRESENTATION AND DATA	42
4.1. TUBES OR PIPES	
4.1.1. Pipe classification	
4.1.2. Pipe Identification principle according to the TOTAL specs	
4.2. REPRESENTATION ON P&ID	
4.3. DIMENSIONING	
4.3.1. The dimensioning criteria	48
4.3.2. Dimensions of the pipes	48
4.3.3. Choice and principle of changing the class	51
4.4. EXERCISES	
5. PIPING OPERATIONS	
5.1. PRECAUTIONS BEFORE START-UP	54
5.2. PRECAUTIONS TO TAKE BEFORE SHUTDOWN OR INTERVENTIONS	54
5.3. 1 st DEGREE MAINTENANCE	55
5.4. EXERCISES	
6. TROUBLESHOOTING	56
6.1. PIPING PROBLEMS	56
6.1.1. External corrosion	56
6.1.2. Internal corrosion	58
6.1.3. Other causes of deterioration	58
6.1.4. Protections	
6.2. NOTES	59
7. GLOSSARY	60
8. SUMMARY OF FIGURES	
9. SUMMARY OF TABLES	62

1. OBJECTIVES

2. THE FUNCTIONS OF PIPING

2.1. INTRODUCTION

The piping or pipe is a network unit which transports a fluid from one type of equipment to another.

The various transported fluids:

- Incompressible fluids (liquid)
- Compressible fluids (gas)
- Fluids under high pressure
- Mixed fluids: liquid gas / slurries / solids

Flow principles

- Difference in pressure between an upstream and a downstream equipment
- Pump (liquid)
- Compressor (gas)
- Gravity flow

2.2. PIPING NETWORK

The piping network is a complete network (pipes, valves and other accessories which are connected to correctly perform a specific job.)

A familiar example of a piping system is the network of water pipes in houses.

This system includes all the components which are needed to bring the water to the house and distribute it to the various places within it.

The piping systems are essential for the successful operation of any industrial plant. There are various systems, each with its own function.

For example the gas oil storage tanks for boiler burners.

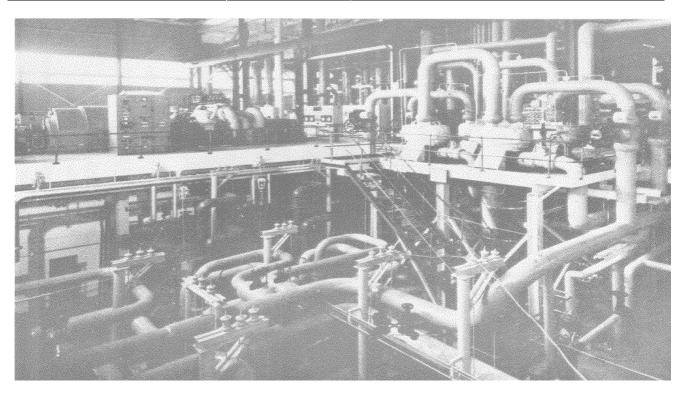


Figure 1: Piping network

2.3. PIPES

Pipes are used mostly to permit fluid flow and must support specifically determined pressure, compression and tensile stress.

They must also resist buckling.

2.4. FLANGES

The flanges are used to ensure a detachable and leak-proof connection between two piping units (piping section, connection on a rotating machine, on a vessel).

Page 6 of 62

WWW.EDUPUMP.IR

2.5. GASKETS

Placed between 2 flanges, a sealing joint must have the following qualities:

- Be sufficiently plastic to absorb surface irregularities
- Withstand operating pressures without breaking
- Have enough springback to permit the flow of the fluid to the outside (leak)
- Not be attacked by the transported fluid

2.6. BLINDS

Blind flanges are installed to isolate a piping section or a storage capacity, each time one needs to ensure that no leakage will occur.

When shutting down a unit, the plates provide 3 essential functions:

Sectional (or isolating) blinds

The blinds are placed at the battery limits of a unit upon shut-down, in order to completely isolate the unit from the rest of the installations which are still operating.

Working blinds

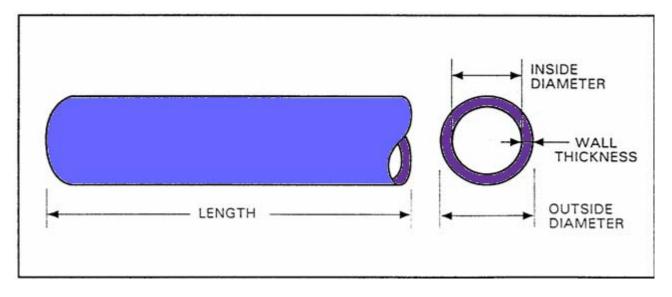
They are placed as close as possible to the vessels, the apparatus and the machines, which have to be inspected, overhauled or otherwise worked on.

Test blinds

Their purpose is to isolate and resist the test pressures in the apparatus, during the regulation tests ordered by the mining or inspection department.

2.7. EXERCISES

1. What is a piping network?


3. PIPING COMPONENTS

3.1. TUBES OR PIPES

3.1.1. Characteristics

A tube is defined by its diameter, the thickness of the envelope and the grade of the steel of which it is composed.

The nominal pipe size expressed according to French or American standards is but a simple number used to classify the tubes.

Figure 2: The definitions of a tube

Correspondence in diameters between French standards (AFNOR) and American (ANSI):

\$	French nominal pipe size	NPS 50	NPS 100
\$	Diameter in inches	2"	4"
φ	True outer diameter	60,3	114,3

In the French standard AFNOR the thickness is expressed in mm.

In the American standard ANSI the thickness is defined by <u>the Schedule Number</u>, (according to the metal) given in the form of a table.

This standard is defined by the American code ANSI B 36-10 for carbon steel according to the internal pressure (P) and to the allowable stress of the metal at the operating temperature.

3.1.2. The various types

Three types are distinguished:

Welded tubes

Obtained through heat or cold they have a welded joint coefficient. In accordance with the manufacturing process of the envelope, the weld can be longitudinal (butt seam tube) or helicoidal (spiral seam tube).

Centrifuge tubes

Obtained by means of a metal flow in a rotating cylindrical mould, these tubes are reserved for special steels.

Seamless tubes

They are mostly used in the oil and petrochemical industry. They are obtained by heating a steel billet up to about 1250°C, then after a piercing made by a metal pear, the obtained tube is laminated and calibrated.

3.1.3. The various classes

API: Mainly used for very high-pressure oil applications.

ASME: Standard, frequently used flanges and tubes.

The wellheads are API equipped.

The manifolds are either API or ASME equipped.

The utilities are usually ASME equipped.

TEP/DDP/DPS Piping MATERIAL CLASSES Page 7 of 30 4 - ABBREVIATIONS USED (In alphabetical order) Date : December 19: ANSI American National Standard Institute MI Malleable cast iron API American Petroleum Institute Mo Molybdenum ASTM American Petroleum Institute Mo Molybdenum ASTM American Society For Testing and Materials MSS Manufacturers Standardization society BB Bolted bonnet NPT Threading as per ANSI B1.20.1 BE Bevelled end OS&Y Outside screw spindle and yoke Br Bronze PE Plain end BW But welding PTFE Teflon CAS Cast alloy steel RF Raised face CCS Cast carbon steel SAW Submerged arc welded CuNi Copper-Nickel SB Screwed bonnet Cr Chromium SF Small female face EFW Electric fusion welded SMLS Seamless ES Extended spindle SO Slip-on FAS Forged alloy steel <td< th=""><th></th><th></th><th></th><th></th><th>SP - TCS - 112</th></td<>					SP - TCS - 112						
4 - ABEREVIATIONS USED (In alphabetical order) ANSI American National Standard Institute MI Malleable cast iron API American Petroleum Institute Mo Molybdenum ASTM American Society For Testing and Materials MSS Manufacturers Standardization society BB Bolted bonnet NPT Threading as per ANSI B1.20.1 BE Bevelled end OS&Y Outside screw spindle and yoke Br Bronze PE Plain end BW But welding PTFE Teflon CAS Cast alloy steel RF Raised face CCS Cast carbon steel SJ Machined face for ring joint CS Carbon steel SAW Submerged arc welded CuNi Copper-Nickel SB Screwed bonnet Cr Chromium SF Small female face EFW Electric fusion welded SMLS Seamless ES Extended spindle SO Slip-on FAS Forged alloy steel SP Standard practice (MSS) FCS Forged carbon steel SPB <t< td=""><td></td><td>TOTA</td><td>L V</td><td>PIPING MATERIA</td><td>Page 7 of 30</td></t<>		TOTA	L V	PIPING MATERIA	Page 7 of 30						
ANSIAmerican National Standard InstituteMIMalleable cast ironAPIAmerican Petroleum InstituteMoMolybdenumASTMAmerican Society For Testing and MaterialsMSSManufacturers Standardization societyBBBolted bonnetNPTThreading as per ANSI B1.20.1BEBevelled endOS&YOutside screw spindle and yokeBrBronzePEPlain endBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged alloy steelSPStandardF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck	1	FEP/DDP	/DPS				Date : December 199				
ANSIAmerican National Standard InstituteMIMalleable cast ironAPIAmerican Petroleum InstituteMoMolybdenumASTMAmerican Society For Testing and MaterialsMSSManufacturers Standardization societyBBBolted bonnetNPTThreading as per ANSI B1.20.1BEBevelled endOS&YOutside screw spindle and yokeBrBronzePEPlain endBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged alloy steelSPStandardF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck											
APIAmerican Petroleum InstituteMoMolybdenumASTMAmerican Society For Testing and MaterialsMSSManufacturers Standardization societyBBBolted bonnetNPTThreading as per ANSI B1.20.1BEBevelled endOS&YOutside screw spindle and yokeBrBronzePEPlain endBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck	4	- <u>ABBI</u>									
ASTMAmerican Society For Testing and MaterialsMSSManufacturers Standardization societyBBBolted bonnetNPTThreading as per ANSI B1.20.1BEBevelled endOS&YOutside screw spindle and yokeBrBronzePEPlain endBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSBScrewed bonnetCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall male faceEFWElectric fusion weldedSMSmall male faceESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged arbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck <td></td> <td>ANSI</td> <td>American</td> <td>National Standard Institute</td> <td>МІ</td> <td>Malleable o</td> <td>cast iron</td>		ANSI	American	National Standard Institute	МІ	Malleable o	cast iron				
BBand MaterialsNBCsocietyBBBolted bonnetNPTThreading as per ANSI B1.20.1BEBevelled endOS&YOutside screw spindle and yokeBrBronzePEPlain endBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		API	American	Petroleum Institute	Мо	Molybdenu	ım				
BEDevelopmentInt ProceedingsBEBevelled endOS&YOutside screw spindle and yokeBrBronzePEPlain endBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		ASTM	American and Mater	Society For Testing ials	MSS .		rers Standardization				
BrBronzePEPlainendBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		BB	Bolted bo	nnet	NPT	Threading a	as per ANSI B1.20.1				
IndicationIndicationBWBut weldingPTFETeflonCASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		BE	Bevelled e	end	OS&Y	Outside scr	ew spindle and yoke				
CASCast alloy steelRFRaised faceCCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		Br	Bronze		PE	Plain end					
CCSCast carbon steelRJMachined face for ring jointCSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		BW	But weldi	ng	PTFE	Teflon					
CSCarbon steelSAWSubmerged arc weldedCuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		CAS	Cast alloy	steel	RF	Raised face	;				
CuNiCopper-NickelSBScrewed bonnetCrChromiumSFSmall female faceEFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		CCS	Cast carbo	on steel	RJ	Machined f	ace for ring joint				
CrChromiumSFSmall female faceEFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		cs	Carbon ste	eel	SAW	Submerged	arc welded				
EFWElectric fusion weldedSMSmall male faceERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		CuNi	Copper-N	ickel	SB	Screwed bonnet					
ERWElectric resistance weldedSMLSSeamlessESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		Cr	Chromiun	1	SF	Small female face					
ESExtended spindleSOSlip-onFASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		EFW	Electric fu	sion welded	SM	Small male face					
FASForged alloy steelSPStandard practice (MSS)FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		ERW	Electric re	sistance welded	SMLS	Seamless					
FCSForged carbon steelSPBSplit bodyFFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		ES ·	Extended	spindle	so .	Slip-on					
FFFlat faceSSStainless steelF6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		FAS	Forged all	oy steel	SP	Standard pr	ractice (MSS)				
F6Stainless steel, 13% CrSTDStandardGrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		FCS	Forged ca	rbon steel	SPB	Split body					
GrGradeSWSocket weldingGRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		FF	Flat face		ss	Stainless st	eel				
GRPGlass reinforced plasticTEThreaded endHCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		F6	Stainless s	steel, 13% Cr	STD	Standard					
HCPHard chrome platedTMTrunion mountedISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		Gr	Grade		sw	Socket weld	ding				
ISRSInside screw riser spindleTPETop entryLJLap jointWNWelding neck		GRP	Glass rein	forced plastic	TE	Threaded e	nd				
LJ Lap joint WN Welding neck		HCP	Hard chro	me plated	тм	Trunion mo	ounted				
LJ Lap joint WN Welding neck		ISRS	Inside scre	ew riser spindle	TPE	Top entry					
		LJ			I I						
				perature Carbon Steel		-					

Figure 3: Used abbreviations

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 11 of 62

3.2. FLANGES

3.2.1. Various flanges

3.2.1.1. Various types of flanges

Welding neck

Used when NPS >= 2" in most cases (the most resistant)

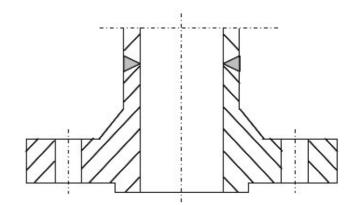


Figure 4: Welding neck flange

Socket welding

Only used for classes 150 and 300 (carbon steel)

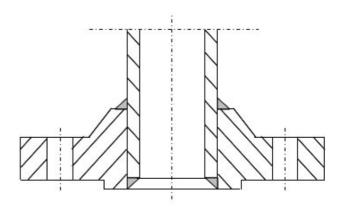


Figure 5: Socket welding flange

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 12 of 62

WWW.EDUPUMP.IR

Threaded

Used for the utility lines, do not use for the process lines

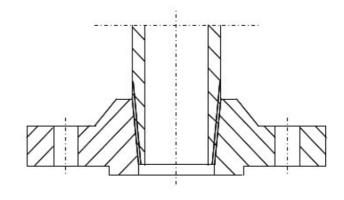


Figure 6: Threaded flange

3.2.1.2. The various types of faces

Flat face (Flat Face FF)

Used for flanges in reinforced iron and plastic (SVR)

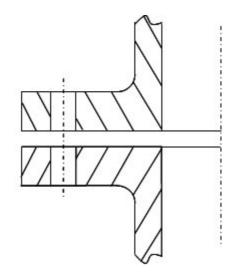


Figure 7: Flat face

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007


Page 13 of 62

WWW.EDUPUMP.IR

Raised Face (RF)

Used for classes 150 to 600

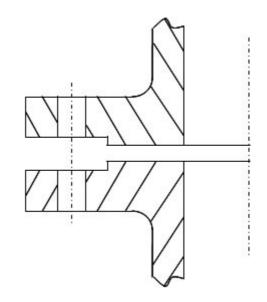


Figure 8: Raised face

Ring joint (Grooved for Ring Joint RJ)

Used for classes 900 to 10 000

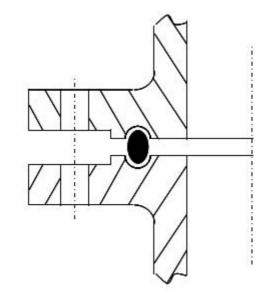


Figure 9: Ring joint

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 14 of 62

3.2.1.3. The various classes

Class TOTAL	ASME class	Material (corrosion in mm)	Fluid	Temperature			
B01	150 RF	C.S. (1.27)	Hydrocarbons (corrosion- resistant gas or liquid) Pressurized drains Corrosion-resistant flare gas, Fuel gas Gas oil Diesel Nitrogen Oily water Cooling water (corrosion- resistant) Tail water (corrosion- resistant) Methanol Glycol	-29 °C to 220 °C			
D01	300 RF	300 RF C.S. (1.27) Hydrocarbons (corrosion- resistant gas or liquid) Pressurized drains Fuel oil (medium pressure), Nitrogen (medium pressure), Methanol Glycol					
F01	600 RF C.S. (1.27)		600 RF C.S. (1.27) Hydrocarbons (corrosion- resistant gas or liquid) Low pressure hydraulic units Methanol Glycol				

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 15 of 62

Class TOTAL	ASME class	Material (corrosion in mm)	Fluid	Temperature
G01	900 RJ	C.S. (1.27)	Hydrocarbons (corrosion- resistant gas or liquid) Deacidified gas (HP sweet gas) Methanol Glycol	-29 °C to 200 °C
H01	1500 RJ or Hub connectors	C.S. (1.27)	Hydrocarbons (corrosion- resistant gas or liquid) deacidified gas (HP sweet gas) Injection water (corrosion- resistant, degassed sea water) MP hydraulic power unit Methanol Glycol	-29 °C to 200 °C
J01	2500 RJ or Hub connectors	C.S. (1.27)	Hydrocarbons (corrosion- resistant gas or liquid) deacidified gas (HP sweet gas) Injection water (corrosion- resistant, degassed sea water) HP hydraulic power unit Methanol Glycol	-29 °C to 200 °C

Table 1: The various classes of flanges (TOTAL and ASME)

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 16 of 62

3.2.2. Characteristics

A flange is defined by various elements:

- Its type : is in accordance with the use, the stress and both operating pressure and temperature,
- Its diameter : is in accordance with the piping line diameter,
- Its face : is in accordance with the sealing joint which will be used,
- Its series or its class : it characterizes the capacities to support both pressure and temperature,
- Its material: is in accordance with pressure, temperature and with the resistance to the corrosion of the transported fluid.

3.2.2.1. American standards

Since the pipes are classified by "Schedule" the flanges are classified according to the following standards, in nominal pressures (NP), class or series.

- API (American Petroleum Institute)
- ASME (American Society of Mechanical Engineers)

ASME used to be called:

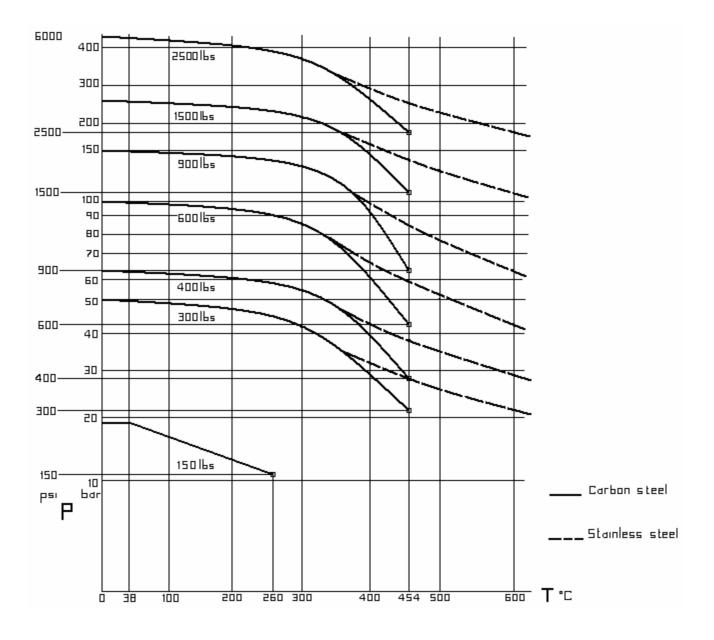
- American Standard Association (ASA \Rightarrow 1966).
- United States of America Standard (USAS \Rightarrow 1969)
- American National Standard Institute (ANSI \Rightarrow 1982).

New name	Old name
NP 20	Class 150 #
NP 50	Class 300 #
NP 100	Class 600 #
NP 150	Class 900 #
NP 250	Class 1 500 #
NP 420	Class 2 500 #

Table 2: The new names for the ANSI flanges

Class	Temperature										
Psi	- 29 °C to 38 °C	260 °C	454 °C								
150	19 bars	10.35 bars /150 psi									
300	49.6 bars		20.70 bars / 300 psi								
400	66.2 bars		27.60 bars / 400 psi								
600	99.3 bars		41.40 bars / 600 psi								
900	148.9 bars		62.10 bars / 900 psi								
1 500	248.4 bars		103.45 bars / 1 500 psi								
2 500	414 bars		172.40 bars (2 500 psi)								

Table 3: Maximum pressure allowed according to ASME standard B 16, 5



Value in Ibs	Use
150	Low pressure
300	Intermediate pressure
600	High pressure
900	Very high pressure
1500	Extremely high pressure
2500	Maximum pressure

Table 4: The use of the various classes

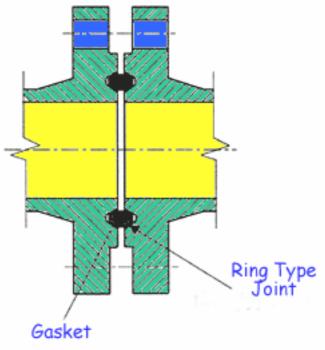
Page 20 of 62

3.2.2.2. The French standards AFNOR

In the beginning, taking in account the material of the flanges, the series were expressed in NP (nominal pressure given in bar) in correspondence with the maximum pressure that the assembly could support, up to a limited temperature of 110 °C.

The values of the standardized NP series were the following:

$\mathsf{NP}: 2.5-6-10-16-25-40-64-100-160-250-320-400-640-1000$


```
Training Manual: EXP-PR-EQ040-EN
Last revision: 16/04/2007
```

Page 21 of 62

WWW.EDUPUMP.IR

3.2.3. The various types of assembling

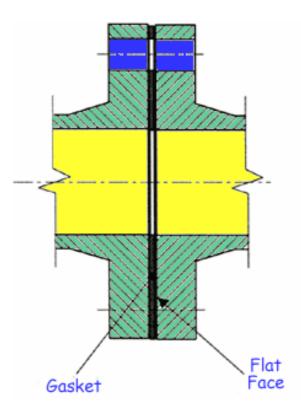


Figure 12: Flat face

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 22 of 62

WWW.EDUPUMP.IR

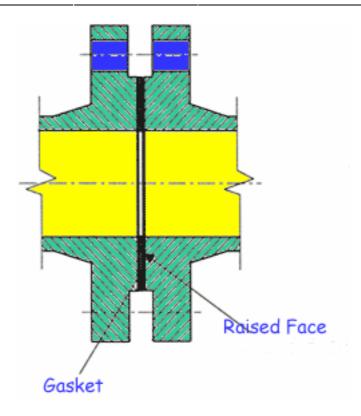


Figure 13: Raised face

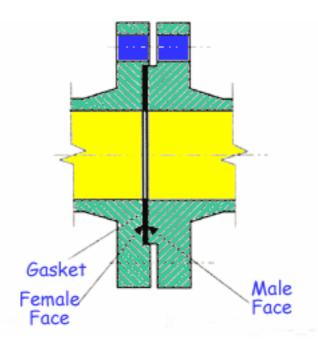


Figure 14: Male and female facing

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 23 of 62

WWW.EDUPUMP.IR

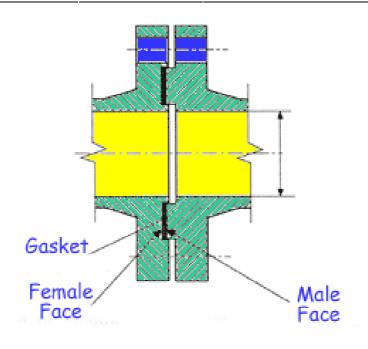


Figure 15: Tongue and groove facing

3.2.4. Tightening the flanges

The flanges must be tightened in a very specific order, for good alignment between the two flanges and for equal squeezing of the gasket, resulting in a tight seal.

3.2.4.1. Tightening torque

A torque wrench is an adjustable tool, which limits the tightening torque of the screw and nut so that they may be installed optimally.

The oldest models are fully mechanical and emit a click when the torque (adjustable by means of a cursor on the wrench) has been reached. The wrench must absolutely be reset before tightening each time.

Current models no longer need to have the wrench reset.

They now have an electronic part, with a display and a keypad, connected to a strain gauge which triggers a buzzer to warn the operator when the tightening is sufficient. No need to reset the wrench, you only need to change the batteries once they are flat.

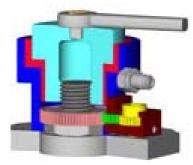
Example: Usually a tightening torque is expressed in daN.m (1 decaNewton.m = 10 Newton.m). The nuts of a cylinder head will, for example, be tightened at 9 daN.m.

International biological biologi	DR	MC	Dia	mètre (mm)	6	8	10	12	14	16	18	20	22	24	27	30	33	36	39	42	45	48	52	56	60	64	+		
Participant product of control Part Part Part Part Part Part Part Part	UTD/	<u> </u>			M6																					M64	+		
MATURE Unit Description Council of a base base of a base of a base base	CONCEPTION ET CALC		010711		1			1.1.1	-				100		1. C. I.		- 1-					-	~			6	+		
CLASE Job No. So 1 2 3 2 9 13 98 283 35 476 486 97 123 481 103 257 271 3910 4355 5422 682 GLASE 440 10 10 3 0 10						1 A 2 4 1		C10000	115	157	192	245	303	353	459	561	694		and the second			100000		2030	2362	2676			
image image <t< td=""><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td>20</td><td>0.0</td><td>400</td><td>100</td><td>050</td><td>005</td><td>170</td><td>0.10</td><td>070</td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.05</td><td>5440</td><td>0570</td><td>T</td></t<>				F					20	0.0	400	100	050	005	170	0.10	070							10.05	5440	0570	T		
CLAB 640 NL 8.88 12 10 150 107 150 101 1101	CLASS 4.6																		2							4932			
600 L 0.10 9 22 49 77 124 193 296 775 129 129 129 120 195 195 197 195 197 195 197 195 197 197 195 197 197 195 197 197 195 197 197 195 197	01400.9.9						1.					10000				100000000		10. ST		The bootstands					100000	17537	T		
NO. 2:9 N.L. 0.8 4 10 19 24 64 44 410 19 122 195 197 2376 2077 192 217 2077 217 197 217 217 2077 2220 2050 3077 422 308 38 44 177 178 198 1497 177 1792 2021 2050 3077 420 307 420 307 420 307 420 307 420 307 420 307 408 307 408 57 150 1111 111 111 111	CLASS 6.6		NL							- Clock																13153			
Coss 0 Pro L 0.16 3 7 16 9 74 99 74 99 74 99 74 74 99 74 74 99 74 74 99 74 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 95 89 77 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 99 74 74 74 74 74 74 74 74	INOX		NI		1.1		100-01-0000		Constant of a	1000 00 10				100000000000000000000000000000000000000			1.1.07/11.07/2		CONTRACTOR OF THE OWNER	10000000000000000000000000000000000000	and the second second			1.12.20112221	the second s	5754	Ŧ		
No. 490 Ni. 0.29 9 21 42 73 110 190 220 133 NA, See note 1 C989 70 590 L 0.19 NA, Vornote 1 220 163 276 177 157 177 157 177 157 177 157 177 157 177 150 177 150 177 150 177 170						7							-									-				4316	t		
Coss 70 290 NL 0.20 NL, Vormole 1 207 318 246 0.73 917 17.7 15.2 18.8 2017 2028 365 4497 5699 65 300 L 0.18 NL, Vormole 1 200 247 187 247 287 288 1747 1742 1787 177 170 170 170 170 170 170 170 170 170 170 170 170 170 170 171 174 1748 171 1748 171 1748 171 1748 171 1748 171 1748 171 1748 171 171 171 171 172 173 171 171 172 173 171 171 172 173 171 171 171 171 172 173 171 171 171 171 171 171 171 171 171 171 171 171						21		77.7		0.000					0.0	424	5/1	141	000	1100	1401	1102	2000	2000	5577	4070			
490 L 0.15 7 16 31 55 97 135 197 244 NA, See nots 200 L 0.15 NA Vertore Vertore 770 1070 10707							42	15	110	100	240	505			496	673	915	1176	1522	1883	2351	2828	3656	4547	5669	6850	T		
BON L 0.16 NA, Vormola	Cillos / C		1				31	55	87	135	187	264			400	010	0.0	1110	1022	1000	2001	2020	0000	1011	0000	0000	1		
Nox 880 NL 9.28 12 28 55 77 103 130 241 423 334 470 644 872 137 162 140 243 334 470 644 127 1283 1420 1556 6567 1556 6567 155 435 6567 155 435 6567 155 435 6567 156 147 140 142 172 263 315 446 157 251 228 316 440 117 1422 183 446 155 451 441 452 183 446 155 451 441 453 4			L		N/A, Vo	- Constanting of				,		204			372	505	687	882	1142	1412	1763	2121	2742	3410	4252	5138	T		
ctss 0 eto L 0.16 9 21 427 73 116 180 249 330 421 624 274 330 421 600 633 127 130 400 551 100 125 132 140 155 135 440 555 100 133 142 553 141 117 1522 138 142 141 117 122 341 420 141 117 120 141 147 120 133 141	INOX	10 1000 00 00 - D	NL				56	97	155	241	333	470	10000000	and the first faile in								a second particular				16441	T		
ATM 290 NL 9.20 5 12 231 40 65 100 113 196 270 215 117 117 1122 183 406 677 915 117 1122 183 121 724 555 825 114 112 211 724 343 435 555 717 112 223 331 440 155 1451 1452 155 1361 141 721 716 555 595 716 117 122 333 129 121 223 331 420 615 324 1130 155 1541 117 122 133 130 130 135 1314 130 155 1314 130 155 1344 141 130 155 1344 140 130 155 144 141 132 133 450 141 142 133 450 141 142 150 1	100 C 200 C 100		L	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						2012/02									2.2.2.2.		11111111111					12331			
290 L 0.16 4 9 17 30 48 75 104 147 200 243 372 505 877 882 1143 114	ASTM A36	250	NL	0,20	5	12	23	40	65	100	139	196	267	338	496	673		1176	1522	1883	2351	2828	3656	4547	5669	6850	Ť		
310 L 0.15 4 11 22 38 0.0 912 129			L		4		-	30		75	104		200	254	372		687	882	1142			2121	2742	3410	4252	5138	t		
Abilité 420 NL 0.20 8 20 39 68 109 168 233 220 443 660 834 1130 153 1976 257 1164 3949 4722 6143 763 9541 156 CLABS 103 840 NL 0.15 16 440 677 152 243 377 621 736 1004 1272 1866 2528 344 1422 573 730 1867 2582 344 1422 573 730 1857 1423 1508 114 1222 1876 1004 1127 1866 2528 3442 1422 573 544 139 1423 1308 106623 1131 1432 1248 1411 1232 1315 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151	AISI 1045	310	NL	0,20	6	15	29	50	80	124	172	243	331	420	615	834	1135	1458	1887	2335	2915	3507	4534	5639	7029	8495	Т		
400 L 0.15 6 15 29 51 81 126 177 277 236 426 628 840 114 132 132 536 136 142 136 142 137 126 257 2787 1616 2583 341 4433 551 154 1380 162 2523 341 4433 551 6623 7376 1034 17088 2182 2500 4025 5175 6689 828 10344 1743 823 1000 L 0.16 15		310	L	0,15	4	11	22	38	60	93	129	182	248	315	461	626	851	1094	1416	1751	2186	2630	3400	4229	5272	6371			
CLASB 103 S40 NL 0.20 18 44 67 162 241 277 521 753 954 1390 1897 2582 3317 4233 5310 6623 7976 10311 112823 15996 4333 CLASB 123 1100 L 0.15 14 333 65 114 182 283 391 552 7753 954 1489 2183 2517 6588 8226 1034 1245 16996 4028 444 610 662 1175 155 1,5	AISI 4140	420	NL	0,20	8	20	39	68	109	168	233	329	449	569	834	1130	1538	1976	2557	3164	3949	4752	6143	7639	9524	11509	1		
340 L 0.15 14 33 65 114 182 283 391 652 753 544 139 1897 282 2317 4233 5310 6529 7976 10311 12221 16966 1575 CLASB 123 1100 L 0.15 16 33 74 133 144 12425 16088 22008 2241 331 431 447 648 81117 155 1,5	196425-2653	420	L	0,15	6	15	29	51	81	126	175	247	336	426	625	848	1154	1482	1918	2373	2962	3564	4607	5730	7143	8632			
CLABS 12.9 1160 NL 0.28 21 52 102 178 284 441 610 962 1175 1489 2183 2960 4028 5175 6698 8286 10344 12445 10088 2008 24433 307 MATERIAU 97 133 213 331 457 648 881 1117 155 1,	CLASS 10.9	940	NL	0,20	18	44	87	152	243	377	521	736	1004	1272	1866	2529	3442	4422	5723	7081	8839	10635	13748	17098	21315	25758	Τ		
1100 L 0.15 16 39 77 133 213 331 457 646 881 1117 1637 2220 3021 3881 8023 6214 7758 9334 12066 15006 18707 224 PLA (IMP) 0,75 1 1 1,25 1,5 1		940	L	0,15	14	33	65	114	182	283	391	552	753	954	1399	1897	2582	3317	4293	5310	6629	7976	10311	12823	15986	19318			
PAS (mm) 0,75 1 1 1,5 </td <td>CLA\$\$ 12.9</td> <td>1100</td> <td>NL</td> <td>0,20</td> <td>21</td> <td>52</td> <td>102</td> <td>178</td> <td>284</td> <td>441</td> <td>610</td> <td>862</td> <td>1175</td> <td>1489</td> <td>2183</td> <td>2960</td> <td>4028</td> <td>5175</td> <td>6698</td> <td>8286</td> <td>10344</td> <td>12445</td> <td>16088</td> <td>20008</td> <td>24943</td> <td>30142</td> <td></td>	CLA\$\$ 12.9	1100	NL	0,20	21	52	102	178	284	441	610	862	1175	1489	2183	2960	4028	5175	6698	8286	10344	12445	16088	20008	24943	30142			
SECTION RESISTANTE (A6) within 22 33 64 32 125 167 216 272 333 401 514 642 784 340 110 1224 1453 1705 2010 2011 2445 245 CLAS8 4.6 240 NL 0.05 5 12 25 42 67 103 149 209 281 365 533 740 993 162 2087 2579 3143 4014 4947 5725 70 CLAS8 4.8 640 L 0.15 4 9 19 32 60 77 112 156 211 277 400 555 745 974 1247 1565 6838 01070 13133 15267 186 CLAS8 4.8 640 L 0.15 3 8 16 28 44 67 98 137 1454 1426 2257 2750 3512 2432 560		1100	L	0,15	16	39	77	133	213	331	457	646	881	1117	1637	2220	3021	3881	5023	6214	7758	9334	12066	15006	18707	22607			
MATERIAU Sy (MPa) ETAT μ COUPLE DESERRACE on Nm Multiplize part 0.7876 pour obtenir des Lbs/F CLASS 4.6 240 NL 0.20 5 12 25 42 67 103 149 209 281 369 533 740 993 1299 1662 207 2579 3143 4014 4947 7572 70 CLASS 8.8 e40 NL 0.20 14 32 66 113 179 274 399 566 750 985 1422 1973 2649 3465 4433 5666 6878 8380 10705 13193 15267 180 LASS 8.0 e40 L 0.15 3 8 16 28 44 67 98 1317 1455 1422 1973 2649 3465 445 1826 2267 2750 512 4520 500 141 1451 126 1317 1456 1850 1137					- A								1.0													4	1		
CLASS 4.4 240 NL 0.20 5 12 25 42 67 103 149 209 281 389 533 740 993 1299 1662 2007 2579 3143 4014 4947 5725 70 CLASS 8.8 640 NL 0.00 14 32 660 77 112 1666 211 277 400 555 746 974 1247 1585 1334 2017 3216 6878 8330 10707 13193 15277 1807 CLASS 8.8 640 L 0.15 10 24 50 85 134 206 299 417 563 739 1067 1479 1987 258 3324 4174 5188 628 803 1070 153 816 243 250 417 518 776 1035 1337 1453 145 1450 145 1450 145 145						100.0			125	167	216	272	333	401	514	642	784		1.01.55	Concernent of the		12.55		2301	2485	2851			
249 L 0.15 4 9 19 32 60 77 112 156 211 277 400 555 745 974 1247 1585 1934 2357 3011 3711 4294 552 CLASS 8.6 640 L 0.15 10 24 50 85 134 206 239 556 750 985 1422 1973 2649 3465 4433 556 6878 8380 10705 1319 1527 1410 1410 141 24 50 85 134 108 246 323 4676 647 869 1137 1454 1826 2257 2750 3512 4329 5009 61 1371 1454 1826 2267 2750 3512 4329 5009 61 INOX 240 NL 0.20 N/A 54 63 93 1371 1452 140 155 143									6																		ę		
CLASS 8.8 640 NL 0.20 14 32 66 113 179 274 399 556 750 985 1422 1973 2649 3465 4433 5566 6878 8380 10705 13193 15267 186 MOX 210 NL 0.20 4 11 22 37 59 90 131 182 246 323 467 647 889 1137 1454 1862 2257 2750 3512 4323 5009 641 MOX 210 L 0.15 3 8 16 28 137 185 242 350 485 652 853 1091 1370 1693 2062 2634 3247 3757 5 MOX 450 NL 0.20 10 23 46 80 171 1035 1731 1732 2174 4181 5154 5964 72 273	CLASS 4.6		1010		-															2001						7006	Ļ		
E40 L 0.15 10 24 50 85 134 206 299 417 563 739 1067 1479 1987 2599 3324 4174 5158 6285 8028 9895 11450 1400 INOX 210 NL 0.20 4 11 22 37 59 90 131 182 246 323 467 647 869 1137 1454 1826 2257 2750 3512 4329 500 67 INOX 450 NL 0.20 10 23 46 80 126 193 280 311 N/A, See note 1 - 293 385 556 771 1035 1732 2174 2687 3274 4181 5154 5964 72 450 L 0.15 N/A, Voir note 1 - 220 289 417 578 776 1015 1299 1631 2015 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000</td><td></td><td></td><td>100700</td><td></td><td></td><td></td><td></td><td></td><td>100000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5255</td><td>Ŧ</td></t<>							0.000			100700						100000										5255	Ŧ		
NOX 210 NL 0.20 4 11 22 37 59 90 131 182 246 323 467 647 869 1137 1454 1826 2257 2750 3512 4329 5009 61. Class 50 210 L 0.15 3 8 16 28 44 67 98 137 185 242 350 485 652 853 1091 1370 1693 2062 2634 3247 3757 45 NOX 450 NL 0.20 10 23 46 80 126 133 1452 242 350 485 652 853 1091 1370 1693 2062 2634 3247 3757 450 Class 70 NL 0.20 13 30 62 106 167 257 374 521 703 3247 1333 1493 2463 3248	CLASS 8.8	1.5.1.2.5.1.	NL								1.000															18683			
Class 50 210 L 0.15 3 8 16 28 44 67 98 137 185 242 350 485 652 853 1091 1370 1693 2062 2634 3247 3757 455 NOX 450 NL 0.20 10 23 46 80 126 133 280 331 N/A, See note 1 7 1035 1353 1732 2174 2687 3274 4181 5154 5964 72 450 L 0.15 N/A, Voir note 1 293 385 556 771 1035 1353 1732 2174 2687 3274 4181 5154 5964 72 450 L 0.15 N/A, Voir note 1 293 385 556 771 1035 1239 1631 2015 2455 3136 3865 4473 54 100X 600 NL 0.20 13 30			L						a construction of the second						1001000	1	1000000000	1.		the second second second	A REAL PROPERTY.	1	0100210		the sector protocol of the	The second s			
INOX Class 70 450 NL 0.20 10 23 46 80 126 193 280 391 N/A, See note 1 250 NL 0.20 N/A, Voir note 1 293 385 556 771 1035 1353 1732 2174 2687 3274 4181 5154 5964 72 450 L 0.15 7 17 35 60 94 145 210 293 N/A, See note 1	000000		NL																							6130 4598			
Class 70 250 NL 0.20 N/A, Voir note 1 293 385 556 771 1035 1333 1732 2174 2687 3274 4181 5154 5964 72 450 L 0.15 7 17 35 60 94 145 210 233 N/A, See note 1 250 L 0.15 N/A, Voir note 1 220 289 417 578 776 1015 1299 1631 2015 2455 3136 3865 4473 574 100 L 0.20 13 30 62 106 167 257 374 521 703 9241 1333 1649 2483 3246 4181 5557 10036 12359 14312 177 Class 80 0.15 10 23 46 80 126 137 283 385 556 771 1035 1333 1732 2174 2687 3274	-		L				1.04.5.2.1			1.500.011					300	400	602	003	1031	1370	7033	2082	2034	3247	3/5/	4038	1		
450 L 0.15 7 17 35 60 94 145 210 293 N/A, See note 1 250 L 0.15 N/A, Voir note 1 220 289 417 578 776 1015 1299 1631 2015 2455 3136 3865 4473 54 INOX 600 NL 0.20 13 30 62 106 167 257 374 521 703 924 1333 1849 2483 3246 4156 5218 6448 7857 10036 12389 14312 175 Class 80 600 L 0.15 10 23 46 80 126 193 280 391 528 633 1000 1387 1863 2436 3117 3914 4836 5893 7527 9277 1073 147 54 Class 80 NL 0.20 5 13 26 444 70							40	00	120	133	280	391			550	774	1025	1352	1720	2174	2697	3274	4101	5154	5964	7298	T		
250 L 0.15 N/A, Voir note 1 220 289 417 578 776 1015 1299 1631 2015 2455 3136 3865 4473 54 INOX 600 NL 0.20 13 30 62 106 167 257 374 521 703 924 1333 1849 2483 3248 4156 5218 6448 7857 10036 12369 14312 175 Class 80 600 L 0.15 10 23 46 80 126 193 280 391 528 693 1000 1387 1653 2436 3117 3914 4836 5893 7527 9277 10734 137 ASTM A36 250 NL 0.20 5 13 265 80 117 163 220 289 1417 578 776 1015 1239 1631 4475 54 596 53316 </td <td>01868 70</td> <td>1.5551</td> <td>1</td> <td></td> <td></td> <td></td> <td>25</td> <td>60</td> <td>94</td> <td>1.45</td> <td>210</td> <td>292</td> <td></td> <td colspan="2"></td> <td colspan="2"></td> <td>m</td> <td>1000</td> <td>1000</td> <td>1102</td> <td>2114</td> <td>2007</td> <td>52/4</td> <td>4101</td> <td>0104</td> <td>0004</td> <td>1200</td> <td>+</td>	01868 70	1.5551	1				25	60	94	1.45	210	292						m	1000	1000	1102	2114	2007	52/4	4101	0104	0004	1200	+
NOX 600 NL 0.20 13 30 62 106 167 257 374 521 703 924 1333 1849 2483 3246 4156 5218 6448 7857 10036 12369 14312 175 Class 80 600 L 0.15 10 23 46 80 126 193 280 391 528 693 1000 1387 1863 2436 3117 3914 4836 5893 7527 9277 10734 131 ASTM A36 250 NL 0.20 5 13 26 44 70 107 156 217 293 385 556 771 1035 1353 1732 2174 2807 3274 4181 5154 5964 722 250 L 0.15 4 9 19 33 52 80 117 689 955 1283 1678 2174		10 10 10 10 10 10 10 10 10 10 10 10 10 1	L				00		34	140	210	200			417	578	776	1015	1299	1631	2015	2455	3136	3865	4473	5474	Ē		
Class 80 600 L 0.15 10 23 46 80 126 193 280 391 528 693 1000 1387 1863 2436 3117 3914 4836 5893 7527 9277 10734 131 ASTM A36 250 NL 0.20 5 13 26 44 70 107 156 217 293 385 556 771 1015 1333 1732 2174 2687 3274 4181 5154 5964 72 250 L 0.15 4 9 19 33 52 80 117 163 200 289 417 578 776 1015 129 1613 2015 21455 3180 3865 4473 54 AI811045 310 NL 0.20 7 16 32 55 86 133 193 269 363 477 789 516 <	INOX						62	106	167	257	374	521	a statistical data	A PROPERTY OF A PROPERTY OF	1001		a provide state for a series		State States	ALC: NOT THE REAL PROPERTY OF	A STATISTICS OF A STATISTICS O	Contractor Physics	1000 P 200		U.S. LINCK, Contract	17515	Ŀ		
ASTM A36 250 NL 0.20 5 13 26 44 70 107 156 217 293 385 556 771 1035 133 172 2174 2687 3274 4181 5154 5964 72 250 L 0.15 4 9 19 33 52 80 117 163 220 289 417 578 776 1015 129 1631 2015 2455 3136 3865 4473 54 AIBI 1045 310 NL 0.20 7 16 32 55 86 133 193 269 363 477 689 955 1283 1678 2147 2696 3331 4059 5185 6390 7395 90 AISI 1045 J10 L 0.15 5 12 24 411 656 100 145 202 273 358 517 717 96	Contraction (1997)										1.0.0.0.00									100 C						13136			
250 L 0.15 4 9 19 33 52 80 117 163 220 289 417 578 776 1015 129 1631 2015 2455 3136 3865 4473 54 AISI 1045 310 NL 0.20 7 16 32 55 86 133 193 269 363 477 689 965 1283 1678 2147 2696 3331 4059 5185 6390 7395 90 310 L 0.15 5 12 24 41 65 100 145 202 273 358 517 717 962 1259 1610 2022 2488 3044 3889 4793 5546 677 AISI 1440 420 NL 0.20 9 21 43 74 117 180 262 365 492 647 933 1294 1738 2274			NL											11200 2412020					The second second second	12 P. 20 P. 20 P. 20		Contraction of the Party	20000000	Constant of the second s	and the second second second	7298	f		
310 L 0.15 5 12 24 41 65 100 145 202 273 358 517 717 962 125 161 202 2498 3044 3899 4793 5546 67 AISI 4140 420 NL 0.20 9 21 43 74 117 180 262 365 492 647 933 1294 1738 2274 2909 3653 4513 5500 7025 858 10019 122 420 L 0.15 7 16 33 56 88 135 196 274 369 485 700 971 1704 1705 2182 2739 3385 4125 509 6494 7514 91 CLASS 10 NL 0.20 20 47 97 166 262 402 585 817 1102 1447 2089 2897 3817 4816 <	000000000			NI 2012 COACC	4			33																	4473	5474	t		
Al814140 420 NL 0.20 9 21 43 74 117 180 262 365 492 647 933 1294 1738 2274 2909 3653 4513 5500 7025 8658 10019 122 420 L 0.15 7 16 33 56 88 135 196 274 369 485 700 971 1304 1705 2182 2739 3385 4125 5269 6494 7514 911 CLASS 10.5 940 NL 0.20 20 47 97 166 262 402 585 817 1102 1447 2089 2897 3891 5089 6510 8175 10101 12309 15722 19378 22423 274 940 L 0.15 15 35 73 125 197 302 439 613 827 1085 1567 2173	AISI 1045	310	NL	0,20	7	16	32	55	86	133	193	269	363	477	689	955	1283	1678	2147	2696	3331	4059	5185	6390	7395	9050	Ť		
420 L 0.15 7 16 33 56 88 135 196 274 369 485 700 971 1304 1705 2182 2739 3385 4125 5269 6494 7514 911 CLASS 10.9 940 NL 0.20 20 47 97 166 262 402 585 817 1102 1447 2089 2897 3891 5089 6510 8175 10101 12309 15722 19378 22423 274 349 613 827 1085 1567 2173 2918 3817 4883 6131 7576 9232 11792 14533 16817 205 CLASS 12.9 1100 NL 0.20 23 55 114 194 307 471 685 956 1290 1693 2445 3390 4553 5955 7619 9566 11821 14404 18399 22676 26240		310	L	0,15	5	12	24	41	65	100	145	202	273	358	517	717	962	1259	1610	2022	2498	3044	3889	4793	5546	6787	t		
CLASS 10.9 940 NL 0.20 20 47 97 166 262 402 585 817 1102 1447 2089 2897 3891 5089 6510 8175 10101 12309 15722 19378 22423 274 940 L 0.15 15 35 73 125 197 302 439 613 827 1085 1567 2173 2918 3817 4883 6131 7576 9232 11792 14533 16817 205 CLASS 12.9 1100 NL 0.20 23 55 114 194 307 471 685 956 1290 1693 2445 3390 4553 5955 7619 9566 11821 14404 18399 22676 26240 321	AISI 4140	420	NL	0,20	9	21	43	74	117	180	262	365	492	647	933	1294	1738	2274	2909	3653	4513	5500	7025	8658	10019	12261	T		
340 L 0,15 15 35 73 125 197 302 439 613 827 1085 1567 2173 2918 3817 4883 6131 7576 9232 11792 14533 16817 205 CLASS 12.9 1100 NL 0.20 23 55 114 194 307 471 685 956 1290 1693 2445 3390 4553 5955 7619 9566 11821 14404 18399 22676 26240 321	10001493606	420	L	0,15	7	16	33	56	88	135	196	274	369	485	700	971	1304	1705	2182	2739	3385	4125	5269	6494	7514	9195			
CLASS 12.9 1100 NL 0.20 23 55 114 194 307 471 685 956 1290 1693 2445 3390 4553 5955 7619 9566 11821 14404 18399 22676 26240 321	CLASS 10.9	940	NL	0,20	20	47	97	166	262	402	585	817	1102	1447	2089	2897	3891	5089	6510	8175	10101	12309	15722	19378	22423	27441	1		
		940	L	0,15	15	35	73	125	197	302	439	613	827	1085	1567	2173	2918	3817	4883	6131	7576	9232	11792	14533	16817	20580			
1100 1 010 17 14 05 140 000 050 544 747 007 4000 0540 0445 4400 5744 7475 0000 40000 40000 40000 040	CLA\$\$ 12.9	1100	NL	0,20	23	55	114	194	307	471	685	956	1290	1693	2445	3390	4553	5955	7619	9566	11821	14404	18399	22676	26240	32111	T		
100 L 0,15 17 41 85 146 230 353 514 717 567 1270 1833 2543 3415 4466 5714 7175 8866 10803 13799 17007 15680 240		1100	L	0,15	17	41	85	146	230	353	514	717	967	1270	1833	2543	3415	4466	5714	7175	8866	10803	13799	17007	19680	24083			

Table 5: Example of a table with tightening torques

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007 WWW.EDUPUMP.IR

Page 25 of 62 INSTAGARAM:EDUPUMP.IR



3.2.4.2. Tools for tightening by hydraulic tensioning

The hydraulic bolt tensioning cylinders are described as tools for tightening by means of hydraulic pull as they tighten the screw without any interference fit stress (friction or torsion).

The operating principle of the hydraulic bolt tensioning cylinder (tensioning method) is briefly explained, along with its advantages, and compared to tightening with a conventional torque.

The use of the tensioning method allows for large tightening reproducibility from one screw to the other (tolerance close to ± 2 , 5%).

The hydraulic bolt tensioning cylinder is placed on the external thread (passing above the nut).

Figure 16: Positioning the hydraulic bolt tensioning cylinder on the screw

The hydraulic pressure is provided by a hydraulic power pack pulls on the screw without exerting any torsional or frictional stress.

There is a linear relationship between the hydraulic pressure transmitted to the hydraulic bolt tensioning cylinder and the tension force of the screw, thereby ensuring a high degree of precision.

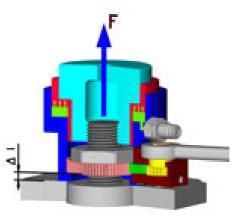
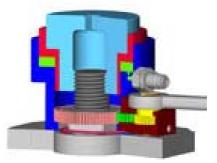


Figure 17: Drawing of the screw

Once the required pressure has been reached, the nut is put in contact with the bearing surface, without any frictional stress, using a hand torque wrench.

Thanks to this principle, and in the absence of all interference fit stress (torsion and friction), it is possible to tighten screws up to 98% of the elastic limit.


Place the hydraulic bolt tensioning cylinder on the screw, using a spanner wrench or an electric screwdriver. When the selected hydraulic pressure has been reached, the screw is pulled without any frictional or torsional stress.

Page 26 of 62

Place the nut on the contact surface using a spanner wrench. The screw is tight.

Figure 18: Positioning the nut

Advantages:

- Great tightening force achieved with small sized tools (Thread W 510 or M340; 45,000 kN)
- No torsional stress in the screw
- Only tensile stress in the screw
- Tightening of several screws simultaneously (multi-tensioning system)
- A hydraulic bolt tensioning cylinder can be used for several screw sizes
- Perfect use for stainless steel as there is no risk of cold junction (seizing) of the thread.
- The sealing surfaces, subject to high temperatures (example: in gas turbines), can be disassembled even after long periods of time.
- The linear relationship between the tension force of the hydraulic bolt tensioning cylinder and the hydraulic pressure, ensures significant reproducibility

3.2.4.3. Installing a new gasket

- Visually examine and clean the flanges, the bolts, the nuts and the washers
- Lubricate the bolts and the nuts
- Make sure that the gasket is in accordance with the characteristics (type, material, ND, the class...)
- Install the gasket and the bolts; use your hands to tighten the nuts and examine the space to ensure the uniformity
- Pre-tighten the nuts to a torque of 10/20 ft.lbs, do not exceed 20 % of the end torque

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 27 of 62

- Proceed to the final tightening using the model below, while tightening in the indicated order and checking each of the bolts
- Retighten after 24 h or with every rise in temperature of the pipe

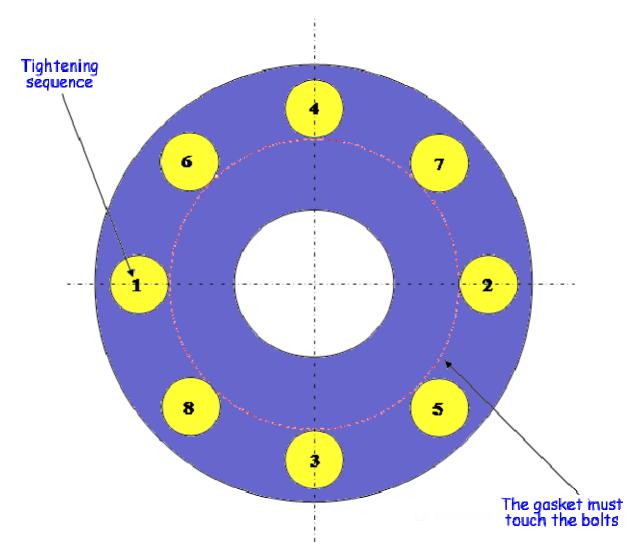


Figure 19: Tightening sequence of the bolts

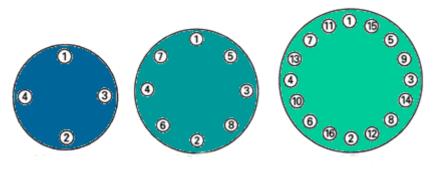


Figure 20: Tightening sequence for various types

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 28 of 62

WWW.EDUPUMP.IR

3.2.5. The main fittings used

Name	Description and use
Fitting	A male and female fitting which connects two straight pipes
Union	A female fitting which can be unscrewed
Elbow (angle of 45º or 90º)	Used to change the direction of a pipe
Sleeve	With a different internal and external thread. It joins one pipe to another, smaller pipe
Tee (T)	Joins 3 pipes together in a T
Y gasket	Joins 3 pipes together in a Y
Cross / + gasket	Joins 4 pipes together in a +
Plug	Solid male thread to temporarily (un)plug a pipe
Сар	Solid plug with internal thread to temporarily (un)plug a pipe
Nipple	A male fitting of a small section often used to fit other fittings
Reducing sleeve	Serves to reduce the diameters of a pipe

Table 6: The main fittings

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 29 of 62

3.3. GASKETS

3.3.1. The various types

Gaskets can be classified into three large families which comprise:

- The soft gasket
- The metallic gaskets
- The metal-asbestos gaskets

Remark:

- Gaskets containing asbestos are prohibited
- Flat gaskets in PTFE (Polytetrafluoroethylene) or containing PTFE are not accepted
- Graphite-impregnated flat gaskets must not be used with anticorrosion alloys when they used in contact with salt water

3.3.1.1. Soft gaskets

- The most commonly used are soft fibrous gaskets composed of a mixture of elastomers.
- The elastomer provides the mechanical resistance
- To improve the mechanical resistance, a very fine metal screen can be imbedded in the middle during manufacturing.
- Numerous elastomers can make up the composition of these gaskets: Viton, rubber …
- Some gaskets are coated with PTFE.

Figure 21: Soft gasket

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 30 of 62

WWW.EDUPUMP.IR

Synthetic rubber gaskets

Thickness: 3 mm for NPS <= 6" 5 mm for NPS > 8"

Figure 22: Synthetic rubber gasket

Synthetic fibre gaskets (klinger type)

Must be impregnated with a non-stick coating on both faces

Figure 23: Synthetic fibre gasket

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 31 of 62

3.3.1.2. Metallic gaskets

They are used for operating conditions with very severe pressures and temperatures.

There are three main types:

- The ring type joints RTJ with oblong or trapezoidal section
- The flat gaskets : smooth, ribbed or corrugated
- The slim corrugated gasket with or without packing
- The lens-shaped gaskets

Their low elasticity demands evenly-distributed tightening (tightening sequence of the heads, extent of their pull during tightening, flatness and alignment of the flanges).

Otherwise, occurrence of a leak is highly probable.

Spiral wound gaskets

The spiral part must be made of stainless steel

The fitting can be made of a material based on PTFE or graphite, with a corrosion inhibitor

The two rings are made of epoxy-coated carbon steel or in stainless steel

Figure 24: Spiral wound gasket

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 32 of 62

Ring joint gaskets

The section can be oval or octagonal shaped

The gaskets must have a hardness (HB) < to that of the flanges in order to guarantee a tight sealing

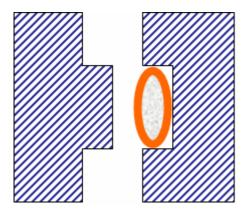


Figure 25: Ring joint gaskets

3.3.1.3. The metal-elastomer gaskets

A metal covering (copper, aluminium, stainless steel ...) coats an elastomer compound forming the gasket core.

Figure 26: Metal-elastomer gasket

When placed in a groove, these gaskets must have the crimped side facing the bottom of the groove.

Figure 27: Positioning a metal-elastomer gasket

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 33 of 62

WWW.EDUPUMP.IR

3.3.2. Using gaskets

The gaskets must be fully adapted to the operating conditions (diameter, series and quality).

The gaskets are **not reusable** with exception of some metallic gaskets which can be reused provided they are not deformed or scratched.

The flange faces must not have deteriorations such as: scratches, corrosion, substantial pitting ...

The gaskets must be perfectly centred between the flanges.

The tightening technique must ensure regular gradual squeezing over the whole surface of the gasket.

The metal coverings are sensitive to various types of corrosion. It is good to verify the state of the gaskets after use.

A strip, of PTFE, expanded graphite and ceramic fibres is wound in a spiral together with a metal strip in the form of a V. This type of gasket is called a spiral wound gasket.

When used with raised face flanges, they are fitted with an outer alignment ring.

To prevent the metal spiral from deteriorating on the fluid side, they can be equipped with an internal ring



Figure 28: Gasket with inner reinforcement and alignment ring

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 34 of 62

FLUID	MATERIAL
Water	Rubber
Cold oil	Neoprene
Hot oil	Ingot iron
Low temperature gas	Rubber
High temperature gas	Elastomer
Acids	Metal resistant to corrosion

Table 7 : Type of material according to the fluid

Page 35 of 62

3.4. BLINDS

3.4.1. The various types

3.4.1.1. Flush joints

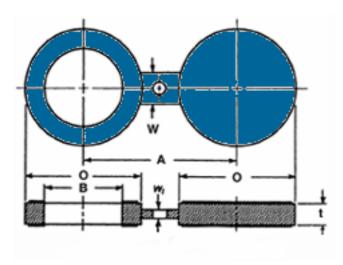
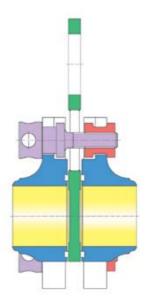

They are simple metal discs with a tail and are inserted in case of need.

Figure 29 : Flush joint


3.4.1.2. The reversible blinds

The spectacle blinds are permanently installed.

In open position they let the fluid pass; in closed position they stop the circulation.

Figure 30: Spectacle blind

They are placed between two flanges.

Figure 31: Assembling a spectacle blind

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 36 of 62

WWW.EDUPUMP.IR

INSTAGARAM:EDUPUMP.IR

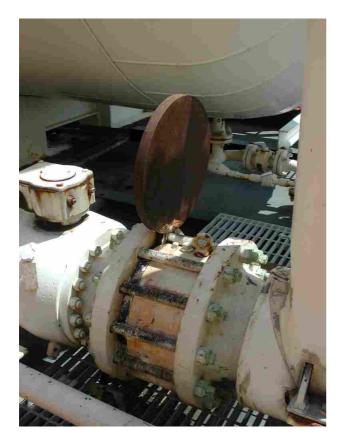


Figure 32: Spectacle blind in open position

Figure 33: Spectacle blind in closed position

Figure 34: Blind flanges

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 37 of 62

WWW.EDUPUMP.IR

INSTAGARAM:EDUPUMP.IR

3.4.1.3. Blind flanges

Blind flanges are installed to close the ends of the pipes, the valves or the equipment.

The bolts pass through the blind flanges and the equipment flanges.

After the placing of a gasket the bolts must be tightened according to specifications.

Figure 35: Blind flange

ATTENTION:

Flanges, gaskets and bolting must correspond to the class of the initial flange.

3.4.2. Gasket brackets

The pipes are submitted to stress from:

- Their own weight
- Vibrations
- Dilatation

It is therefore imperative that they be supported to maintain the network in good operating condition.

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 38 of 62

WWW.EDUPUMP.IR

INSTAGARAM:EDUPUMP.IR

The various types of brackets:

- **Fixed** clamp type, or well welded
- Gliding bracket, permitting a liberty to move in an axis, or a design to permit the dilatation of the pipe.
- Special bracket of a spring box type

Page 39 of 62

3.5. ADVANTAGES AND DRAWBACKS OF THE VARIOUS TYPES

3.5.1. Carbon steel

Advantages

- Price of the raw material
- Easy to weld
- Good resistance to pressure

Drawbacks

Sensitive to corrosion

3.5.2. Stainless steel

There are various qualities of stainless steel; example: 304/ 316 / 316 L

The 304 being at the bottom-of-the-line; used in places which demand a simple corrosion-protection.

The more sophisticated 316L is used in more corrosive sectors.

The numbers correspond with the various percentages of Nickel which are employed during manufacturing

Advantages

Resists corrosion

Drawbacks

- Difficult to weld
- Galvanic cell formation with the carbon steel from the structures
- Price

3.5.3. Synthetic materials

Advantages

- Corrosion resistant
- Lightness
- Easy to apply
- Does not need hot working (except for some thermoplastic components)

Drawbacks

- Hardly withstands pressure
- Fragile to shock
- Poor fire resistance

3.6. EXERCISES

Page 41 of 62

4. REPRESENTATION AND DATA

This chapter describes ...

4.1. TUBES OR PIPES

4.1.1. Pipe classification

Networks are classified as process or service lines.

Service pipes transport water, steam, gas and air which is needed for the process utility systems.

Most of the pipes are colour-coded.

The transported fluid is identified by the colour and the code.

For example, the pipe which transports the water for the fire-fighting facilities is usually painted red and is also identified with white lettering.

4.1.2. Pipe Identification principle according to the TOTAL specs

The class is identified by a code, composed of: 1 letter and 3 numbers

Example:

B 511

- $\mathbf{B} \Rightarrow$ Class = 150 lbs (pounds or 1lbs is equal to 453 gr) ASME class
- $51 \Rightarrow$ Liquid or hardly corrosive gas hydrocarbons
- $1 \Rightarrow$ Corrosion thickness = 1.5 mm

Classes:

Α	В	С	D	Е	F	G	Н	J
125	150	300	600	900	1500	2500	TUBING	10 000

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 42 of 62

Corrosion thicknesses:

- **♦ 0** ⇒ 0.0 mm
- **♦ 1** ⇒ 1.5 mm
- **◆ 2** ⇒ 3.0 mm
- **3** ⇒ 6.0 mm

Page 43 of 62

IDENTIFICATION		SYSTEM LIST
	PLUD STWOOLS AM : WETUNAL AP - ADDILUKES PUMPS AV - YONT GAS BW : NEVERSE CONCOR MATERY SULLED WATCH CD - GANSON DEDIRE CD - GANSON DEDIRE CF - HEATHON WEDINA CF - LINSED ONAM DO - OFFO OFSM DO -	A GI - PTROLETION BELLS A GI - BELL EXEMPTY A GI - RELL EXEMPTY A GI - RELL EXEMPTY A GI - RECOUNTINEETTON A GI - REAL EXEMPTING A GI - REAL AND JUNCTIN A GI - REAL AND JUNCTIN A GI - REAL AND JUNCTING A GI - REAL THREE AND FOLLOW FILL MET LENG A GI - REAL THREE AND FOLLOW FILL A GI - REAL THREE STATEM B GI - SEPLEMENTEM FOR VILL HAND FILL B GI - SEPLEMENTEM FOR SALES B GI - GRUEC GL MEALTHRE FOR FOR SALES B GI - GRUEC GL MEALTHRE FOR FOR SALES B GI - GRUEC GL MEALTHRE FOR FOR SALES B GI - GRUEC GL FOR FOR SALES B GI - GRUEC GL FOR FOR THE SALES B GI - GRUEC GL FOR FOR THE SALES B GI - GRUEC GL FOR FOR FOR SALES B GI - GRUEC GL FOR FOR SALES B GI - GRUEC GL FOR FOR SALES B GI - GRUEC AL RESTOR FOR ALTER THEATHEAT B GI - FLOW FOLL B GI - GRUEC AL RESTOR FOR ALTER THEATHEAT B GI - FOR SALES ALE FOR FOR ALTER THEATHEAT B GI - FOR SALES ALE FOR FOR ALTER THEATHEAT B GI - GRUECAL RESTOR FOR ALTER THEATHEAT B GI - FOR SALES ALE FOR FOR ALTER THEATHEAT B GI - GRUECAL RESTOR FOR ALTER TH
	HAR - HTDEAULC FLUD LA - ASTRAMENT AN JC - DRIVEN SCAPEMER JF - REA WATER FAULTA SCAPEMER/CALDINE LT - LOW TES MU - NARD WATER MC - RATE CALDINERATE MG - RATE MATERAL ANS MU - STUDE CL	0 COLUCT CONTRESSON 0 0 0 COLUCT CONTRESSON 0 COLUCT COLUCT CONTRESSON 0 COLUCT COLU
HOTE 1 - SECTION NUMBER 3 - CRASSOL R - ROSA L - LINIDATORIANO	NU - FRECUESD TWITLE PC - FREWE RG = RAW FILL GAA RT = REI TED SA - SERTES AR SO - DELINE GAA SU = RAW GEA INTER TW - RANE GEA INTER TW - RANE GEA INTER TW - RANE GEA INTER UU - UTILITY TWIER UU - UTILITY UU - UTILITY UU - UTILITY TWIER UU - UTILITY UU - UTILITY U	0 0 - LINELCALL AND FLOW LINES FOR WATER INJECTION 0 0 - NART DAY THE AYSTEM 0 0 - MART DAY AND FRANCE THAT 0 0 - MART DAY AND THE MATCH STATEM 0 - MART DAY AND THE MATCH STATEM 1 - MART DAY 1 - STATEMAL FESSION OF FLAMMANE MARE 1 - STATEMAL FESSION OF FLAMMANE MARE 1 - STATEMACTINA CALL 1 - STATEMACTINA 1 - STATEMACTINA 1 - STATEMACTINA
HH PIPING CLAS HH PIPING CLAS COMPARALLE TO AS SOP AS MANY ETHING - LUMAN STEEL HPS FOR PACIDAE SOMM M. TOULE STREAM I ANNAL ON EDIMAL OF TO IPPING MANY AND AN EDIMAL OF TO IPPING MANY AND MELTINGEN TO IPPING MANY	2 // == 21 = 12 = 12 = 12	F 20 - NT EXCENT F 30 - SEMAGE TERMINENT SYLTEM F 31 - FUTALLE WATER F 32 - ELEUTROCHURHWATEN F 32 - ELEUTROCHURHWATEN F 33 - LASSWATEN F 34 - BALLAST PARES F 35 - BALLAST PARES F 36 - BALLAST PARES F 37 - BALLAST PARES F 38 - BALLAST PARES F 39 - BALLAST PARES F 30 - BALLAST PARES F 31 - BALLAST PARES F 32 - BALLAST PARES F 34 - CATERNO F 35 - CATERNO
ATTYNDO • ARE VEIDED DANKAN KITEL NYE MR. TOMOLE STREAMIN STADI MANNE AN STERNA • BARAN STEEL NYES FOR HAN PRESSUES I MR. TOMOLE STREAMIN STO MANNE ON AN SUS 17 • STUMPES STEEL NYE AR SHER SUS 17 • BILLET VEIDED LANSE OMIETRI STANLESS I SUS CAN • BLETTIC ISSIFILMES VEIDED MARKED ST EMMALENT TO BUT TP MATERIAL	97495 17990 : 68 6769	

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 44 of 62

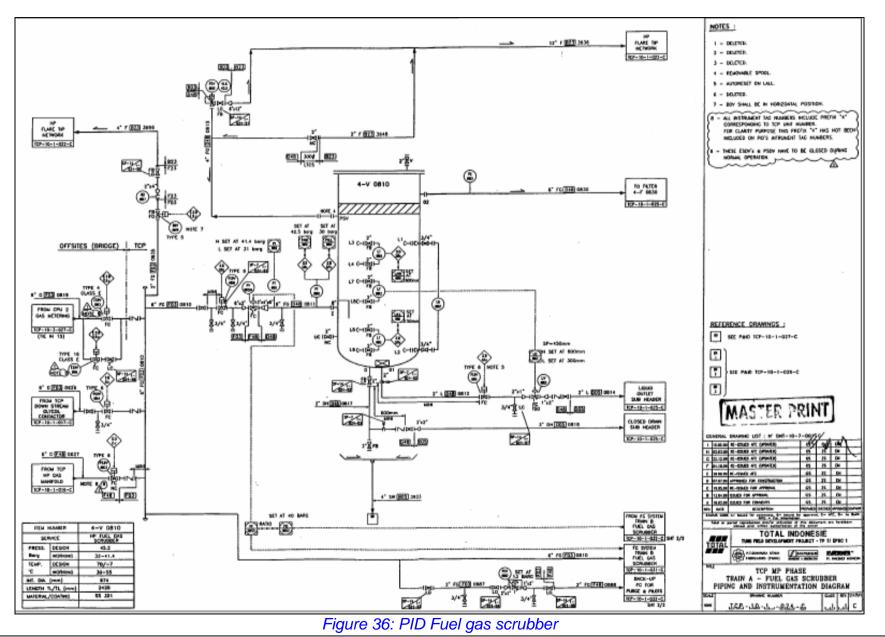
4.2. REPRESENTATION ON P&ID

To be able to read the various documents at our disposal on the oil sites, especially concerning the piping, it is necessary to KNOW how to recognise and interpret the symbols, lines and other information found on the PFD and P&ID.

A PID (Piping & Instrumentation Diagram) usually offers a minimum amount of information on the pipe (this is especially important when making modifications to the lines)

- The pipe lines with their symbols
- The valves with their system for opening and closing.
- The plugs

Be sure to check that you are working on the latest version.



			UNE VALVES & GE	NERAL P	PING SYNBOLS			UNIT NUMBE	()1	EQUIPMENT DESIGNATION	FLUID SYMBOLS
	ALLA PROTOS UNO SCIENCET PROTOS & UTULTY INIS NA LAN PROTOS LANS BATERY & PROTOS LANS BATERY & PROTOS LANS BATERY & PROTOS MEAN PROC SYLCECLON MEAN BATERY UNIS LANSE LANS LATENCE UNIS LANSE LANS LATENCE UNIS BALAND LINES C : DOU PERSONO, PROTOS DI		IDEGAME ACTUCA DENSING ACTUCA AFRAG ACTUCA FRAGE ACTUCA BOAT ILLAS DEAT ICOLACTION ICE ICELS ACTUCATION ACTUCATION COLOR THAN ACTUCATION ACTUCA		HITELEATERUE COMUTION VERTIN PENNE RECOM TO UN RUMA PELACE COMPLETERS TO UN RUMA PELACE COMUTION TO CLOSED REMA (SEE COMUTION TO CLOSED REMA (SEE 2017	. Z . Z		00 FRT & CAS STRING 01 RECENSE (SCIENCE) 02 CONFECTOR (SCIENCE) 03 CONFECTOR (SCIENCE) 04 CONFECTOR (SCIENCE) 05 CONFECTOR (SCIENCE) <th>4 Pa(eas) 2006 00 00 00 00 00 00 00 00 00 00 00 00</th> <th>HE COLLA BOILE COLLAR DETER COLLAR HET COLLARDER LAND LAND LICENC COLLARDER HET COLLARDER HET LICENC COLLARDER HET LICENC HET LICENCC HET LICENCC HET LICENC HET LICENC HET LICE</th> <th>07 Diffusce, NLETHIN 08 Diffusce, NLETHIN 08 Diffusce, NLETHIN 08 Diffusce, NLETHIN 08 Diffusce, NLETHIN 09 Diffusce, NLETHIN 01 Diffusce, Diffusce,</th>	4 Pa(eas) 2006 00 00 00 00 00 00 00 00 00 00 00 00	HE COLLA BOILE COLLAR DETER COLLAR HET COLLARDER LAND LAND LICENC COLLARDER HET COLLARDER HET LICENC COLLARDER HET LICENC HET LICENCC HET LICENCC HET LICENC HET LICENC HET LICE	07 Diffusce, NLETHIN 08 Diffusce, NLETHIN 08 Diffusce, NLETHIN 08 Diffusce, NLETHIN 08 Diffusce, NLETHIN 09 Diffusce, NLETHIN 01 Diffusce,
	RANKE.	¥.		1	CONNECTION TO WATER UPON WANK [NON-FIRZARDING AREA]	ð	WINNER FLOW WAYE				
	наци, лика (онт) оранон и инор ино анио (онор) ораноц и ино (онор) ораноц и ино (онор) ораноц и ино (онор) ораноц и ино сонисто наш сонистик (ино)		Distances interest	jø, øei	Н пили лик Н пили лик нас номпа ис помпа ис нож пь нежал нож пь нежалов соместоя ть калая		1 BADRY FIRE LINAME REPORT FIRE "* THE INFORM "* THE INFORM "* THE INFORM INFORMATION CHART OF STE DIST ARE MAD.] ON AVOID CONTROL OF STE ON AVOID CONTROL OF STE	PER ETVI A OPLE A UTSY HERE TO : NAH-18-2-16	UNI USIS 2-C RUX H	Any an mulciss work as an investigation control (C) (1000)(SNA CONTRO (C) (2000)(SNA CONTRO (C)	ACC MILLIO CONTROL CENTRE WH MARKY SC MORALLY CLOSED MORALLY DETAIL MORALLY DETAILS MORALLY DETA
			NECHANICAL	& PROCE	SS EQUIPMENT SYMBOLS					PIPING LINE DÉSIGNATION	SAMPLE CONNECTION DETAIL
	M COMMUNE -	0-1	DEDL ORDE	TT						12" C BOT HI ID	Que
-8	nap Hornocano Pozna Divician Nap		105 (MINE 105 10894 NG48 104 104		EXMANCES EXAMPLESS ANT COSC IN MALCOSC IN MA	0			ica, Istan stalije P/Adukteta (Adukteta (a filos	() () () () () () () () () ()	0.41 01 11 ⁴ 14 1.08.09079(779) 91 11 18
	nar Herono(che) Tatit		das turine Irona Irona du Irona, finip	Dabaaa	COMPRESSION ANT CODECES PREVIOUS COMPT ANT CODECES ANT CODECES AN		PAR HAN Decondent		entice P(A)UCO(B) COURC COURC COURC COURC COURCE CO		
	nar Homoschei Homoschei Homoschei Nar Homoschei H		das turine Irona Irona du Irona, finip		COMPRESSION ANT COLLES PROCESSION COMPT AND COLLES ANT COLLEM WITH ANT COLLEM WITH ANT COLLEM WITH ANT COLLEM WITH ANT COLLEM WITH ANT COLLEM WITH ANT COLLEM ANT COLLEMANT				AND CONTRACTOR AND CONTRACTOR CONTRACTOR CONTRACTOR PARENTS P		рит али али али али али али али али али али

Training Manual: EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 46 of 62

Training Manual EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 47 of 62

4.3. DIMENSIONING

4.3.1. The dimensioning criteria

The dimensioning of a pipe and of the associated elements is determined by what it will be used for (flow rate, velocity, pressure, location)

There are formulas which provide the correct dimensions.

Efforts are made not to oversize the tubes because of problems with weight, price and excessive thickness.

4.3.2. Dimensions of the pipes

Pipe dimensions are standardised in inches and also in the metric system.

The most commonly used are the measurements in inches:

$$\frac{1}{2}$$
" - $\frac{3}{4}$ " - 1" - $\frac{1}{2}$ " - 2" - 3" - 4" - 6" - 8"
10" - 12" - 14" - 16" - 18"
20" - 24"
30" - 36"
42" - 48"
56"
60"

Page 48 of 62

Example:

A pipe with a nominal pipe size of 4" (100 mm) is available in the thicknesses and diameters below:

Outer diameter in mm	Interior diameter in mm	Thickness in mm	Schedule
114.3	102.3	6.00	40
114.3	97.2	8.55	80
114.3	87.3	13.50	160

Table 8: Various thicknesses of a 4" carbon steel pipe

IMPORTANT: For each material the Schedule changes

After construction and assembly, the pipes are submitted to a radiographic check of the weldings and a hydrostatic test.

The tests may be conducted on part or all of the network in compliance with the specifications.

To take into account the corrosive or erosive effect of the fluids, a supplemental thickness, called a corrosion allowance, is generally defined at 1.5 mm for slightly corrosive services or 3mm for the other services.

Page 49 of 62

WWW.EDUPUMP.IR

Di	amètre nominal	Unités	1/2"	3/4"	1"	1 1/2"	2"	3"	4"	6"	8"	10"	12"	14"	16**	18"	20"	24"
E 10	Épaisseur Ø intérieur	m/m m/m	2,108 17,110	2,108 22,450	2,768 27,860	2,758 42,72	2,768 54,780	3,048 82,800	3,048 108,20	3,403 161,400	3,759 211,500	4,191 264,600	4,572 314,700	6,350 342,900	6,350 393,700	6,350 444,500	6,350 495,300	125
SCHEDULE	Poids au ml Poids d'eau au ml Section de passage	kg kg cm²	0,998 0,230 2,302	1,275 0,396 3,960	2,089 0,609 6,096	3,102 1,433 14,33	3,925 2,356 23,560	6,443 5,387 53,870	8,347 9,191 91,910	13,820 20,440 204,400	19,940 35,150 351,500	27,820 55,010 550,100	36,010 77,780 777,800	54,610 92,320 923,200	62,650 121,700 1217	70,530 155,10 1551	78,420 192,600 1926	94,330 279,900 2790
w	Ø extérieur	m/m	21,336	26,670	33,401	48,260	60,320	88,900	114,300	168,275	219,075	273,050	323,850	355,600	406,400	457,200	568	609,600
LE 30	Epaisseur Ø intérieur Poids au ml	n/m m/m kg							$\left[\right]$		7,036 205 36,750	7,798 257,400 50,89	8,382 307 65,180	9,525 336,500 81,250	0000000	11,12 434,900 122,300	12,700 482,600 154,900	14,270 581 209,300
SCHEDULE	Poids d'eau au ml Section de passage Ø extérieur	kg cm² m/m									33,030 330,300	56,12 561,120 273,050	74,860 740,600	88,960 889,600 335,600	117,800 1178	148,500 1485 457,200	182,900 1829 508	265,100 2651 609,600
	Epaisseut	m/m	2,769	2,870	3,378	3,683	3,912	5,486	6,020	7,112	8,179	9,271	10,310	11,120	12,700	14,270	15,060	17,450
E 40	Ø intérieur	m/m	15,790	20,930	26,640	40,894	52,500	77,920	102,200	154	202,700	254,500	303,200	333,400	381	428,600	477,800	574,700
SCHEDULE	Poids au ml Poids d'eau au ml	kų kų	1,266 0,196	1,683 0,344	2,498 0,557	4,005	5,436 2,165	11,280 4,768	16,050 8,213	28,240 18,640	42,500	60,270 50,900	79,610 72,190	94,340 87,290	123,200 114	155,800 144,200	182,800 179,300	254,600 259,300
SCH	Section de passage Ø extérieur	cm² m/m	1,960 21,336	3,44 26,670	5,557 33,401	13,156 48,260	21,650 60,320	47,680 88,900		186,400 168,275	322,500 219,075	509 273,050	721,900 323,850	872,900 355,600	1140 406,400	1442 457,200	1793 508	2593 609,600
	Epaisseur Ø intérieur	m/m	2,769	2,870	3,378 26.64	3,683 40,894	3,912 53 500	5,486	6,020	7,112 154	8,179	9,271	9,525 204 800	9,525	9,525 387,300	9,525 438,100	9,525 488,900	9,525 590,500
DARD	poids au ml	m/m kg	15,790 1,266	20,93 1,683	26,64 2,498	40,034	52,500 5,436	77,920 11,280	102,200 16,050	28,240	202,700 42,500	254,500 60,270	304,800 73,810	336,500 81,250	93,150	105	116,900	
STAND	Poids d'eau au mi Section de passage	kg cm²	0,196 1,960	0,344 3,44	0,557 5,557	1,3156 13,1567	2,165 21,650	4,768 47,680	8,213 82,130	18,640 186,400		50,900 509	20220	88,950 889,600	117,800 1178	150,700 1507	187,700 1877	274,100 2741
	Ø extérieur	m/m	21,336	26,670	33,400	48,260	60,320	88,900	114,300	168,275	219,075	273,050	323,850	355,600	406,400	457,200	508	609,600

Figure 37: Tube dimensions - carbon steel type

Page 50 of 62

4.3.3. Choice and principle of changing the class

The choice of the pipes, flanges and gaskets is made during the engineering phase.

Starting from the wellhead we find a series of pipes destined for high pressure; depending on the equipment that is found downstream, the series will evolve towards much more conventional one.

4.4. EXERCISES

5. PIPING OPERATIONS

The operator has a certain number of responsibilities, especially when concerning interventions on lines or equipment.

He is responsible for the observance of the isolation procedures before all work.

In addition to his knowledge of the site, he must, during start-up or shutdown, sign a document specifying the positions and the types of blinds which have been placed for works.

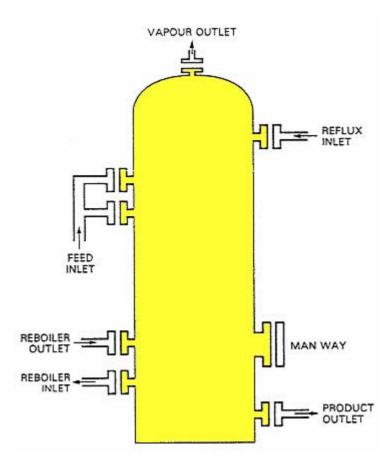


Figure 38: Example of blinding

Before and afterwards, he must **ABSOLUTELY** verify the list of blinds.

Training Manual EXP-PR-EQ040-EN Last revision: 16/04/2007

Page 52 of 62

He has the following document at his disposal:

Process Line	Blind in Operator Initials	Blind Out Operator Initials
Feed Inlet (1)		
Feed Inlet (2)		
Reboiler Outlet		
Reboiler Inlet		
Vapour Inlet		
Product Inlet		

Table 9: Document with positions of the blinds

Page 53 of 62

5.1. PRECAUTIONS BEFORE START-UP

Before signing the blind removal list the operator must:

- Ensure that the whole of the work is finished.
- Check the inside of the storage capacity to see if everything is clean and free of all waste
- Check that all the blinds have been removed.
- Check that the new gaskets have been installed

It is also necessary to clean the inside of the pipe to eliminate the debris or other waste which could be found inside, either by blowing or by rinsing.

The leak tests help check the pipe sealing by increasing the pressure in the pipe usually to 1.5 times the design pressure (providing the pipe has been calculated for such a pressure).

5.2. PRECAUTIONS TO TAKE BEFORE SHUTDOWN OR INTERVENTIONS

Depressurisation

Before any intervention, it is imperative to depressurise the pipes; an **intervention** on a pressurised pipe must in **NO CASE** be attempted.

Drainage

Thoroughly verify the drainage at the low points.

Inerting

Necessary for any intervention on the line (opening of a flange, replacement of a gasket)

Notes: Embrittlement problems on a line require specific precautions.

In case of welding, verify the residual thickness of the pipe, (see chapter corrosion)

Page 54 of 62

5.3. 1st DEGREE MAINTENANCE

Pipes are usually not submitted to preventive maintenance as are safety valves and other equipment. As we have seen they are nevertheless subjected to corrosion or shocks which sometimes damage a part of the line.

In this case the intervention is obligatory and the actions to be carried out are even the more dangerous as the transported fluid is either a gas, or a fluid under pressure or temperature.

The type of intervention on a pipe is either a temporary light repair (fibre glass, collars, or insulation) or a heavy reparation, demanding welding or other technical intervention.

Maintenance consists of:

- Monitoring the sealing (check the tightening of the flanges)
- Outer protection with paint
- Monitoring of internal corrosion (measurement of the thickness with ultrasound, corrosion coupon)

5.4. EXERCISES

Page 55 of 62

6. TROUBLESHOOTING

6.1. PIPING PROBLEMS

6.1.1. External corrosion

Corrosion is the deterioration of a substance due to a chemical reaction to its environment.

The substance does not necessarily have to be a metal. Wood, ceramics, plastic and other materials can also be corroded.

If a material becomes corroded its properties will change and it will no longer correspond to its characteristics.

Generally speaking, no corrosion occurs in a vacuum.

- Salt water is more corrosive than soft water
- Hot water is more corrosive than cold water.
- Hot air is more corrosive than cold air. (if T° C < 80 °C)
- Humid air is more corrosive than dry air.
- Polluted air is more corrosive than clean air
- Acids are more corrosive than alkaline compounds

Important, this information consists of generalities which must be checked according to the sites!

Most of the corrosion which develops on the metals is electrochemical. This corrosion can develop on the inside or outside of a piece of metal equipment.

To protect our equipment, various solutions are placed on or in the pipes.

The pipes deteriorate mainly because of corrosion and erosion.

Page 56 of 62

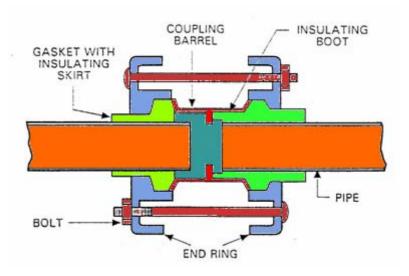


Figure 39: Coupling of insulated pipes

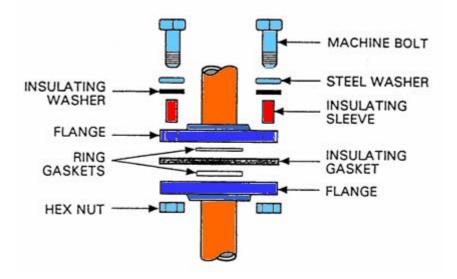


Figure 40: Insulator for flanges

Protective coatings can also be used to protect the systems. The outside of the pipe can be painted with special protective paints.

Special coatings are usually used on the subterranean systems. Plastics and epoxy are some of the newest coatings used for protection against corrosion.

Page 57 of 62

6.1.2. Internal corrosion

Piping networks and static equipment can be affected by both external and internal corrosion.

It is much more difficult to detect the internal corrosion. It can decompose the inner surface causing a corrosion accumulation.

To eliminate internal corrosion, or to slow down its progression, special coatings are used.

Certain chemicals are also used and injected into the pipes in order to inhibit the action of the corrosion or other fluids.

In case of internal corrosion, it is vital to eliminate the source of the corrosion and to determine the extent of the problem, allowing adapted repair.

Wear is greatest at the elbows owing to liquid friction from the changes in direction at the low part of their section.

6.1.3. Other causes of deterioration

It is dangerous, because of risks of rupture:

- To use a pipe as support without careful consideration
- To exert a force on small-diameter pipes
- To walk on a pipe

Furthermore, walking on a pipe constitutes a dangerous act (fall, deterioration of the insulation materials of the heat-proof pipes).

Finally, leaks from petroleum products comprise risks. It is prudent to foresee clamp collars of various diameters to rapidly seal a leak.

Take into account the corrosion to the support-flanges, thermal insulation and welded tapping.

They are actually zones where the corrosion spreads due to the friction or the movements of the pipes.

Page 58 of 62

6.1.4. Protections

There are three main types of protection

- Thermal protection
- Personnel protection
- Protection against shocks

The piping receives:

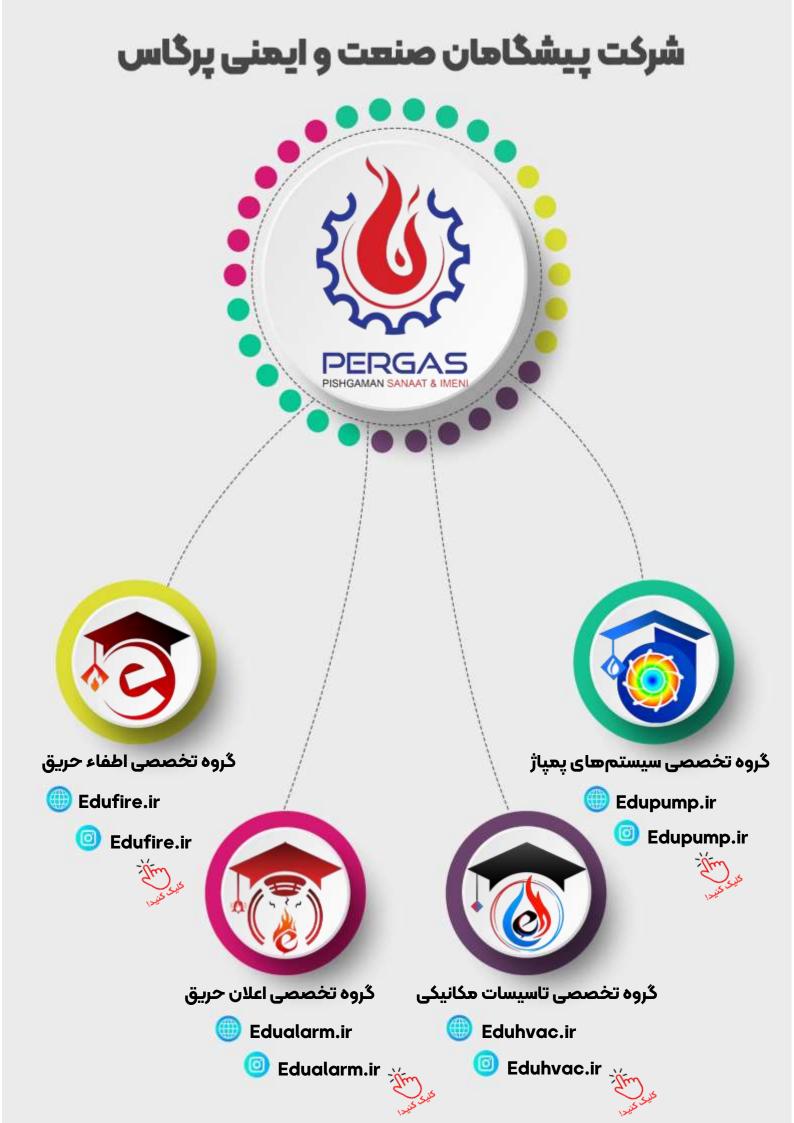
- A cathodic protection, when the nature of the environment suggests a corrosive action because of an electrolysis effect.
- A thermal insulation, when it transports hot substances (heat reduction, protection against fire and the burning).
- An electrical continuity between flanges (put in the ground).
- A corrosion-protective covering and an outer paint (traditional shades).

6.2. NOTES

Page 59 of 62

7. GLOSSARY

8. SUMMARY OF FIGURES


Figure 1: Piping network	6
Figure 2: The definitions of a tube	9
Figure 3: Used abbreviations	
Figure 4: Welding neck flange	.12
Figure 5: Socket welding flange	.12
Figure 6: Threaded flange	
Figure 7: Flat face	.13
Figure 8: Raised face	.14
Figure 9: Ring joint	.14
Figure 10: Pressure curve according to the series	.21
Figure 11: Ring type joint facing	.22
Figure 12: Flat face	
Figure 13: Raised face	
Figure 14: Male and female facing	.23
Figure 15: Tongue and groove facing	
Figure 16: Positioning the hydraulic bolt tensioning cylinder on the screw	
Figure 17: Drawing of the screw	26
Figure 18: Positioning the nut	.27
Figure 19: Tightening sequence of the bolts	28
Figure 20: Tightening sequence for various types	28
Figure 21: Soft gasket	
Figure 22: Synthetic rubber gasket	
Figure 23: Synthetic fibre gasket	
Figure 24: Spiral wound gasket	.32
Figure 25: Ring joint gaskets	.33
Figure 26: Metal-elastomer gasket	
Figure 27: Positioning a metal-elastomer gasket	
Figure 28: Gasket with inner reinforcement and alignment ring	
Figure 29 : Flush joint	
Figure 30: Spectacle blind	
Figure 31: Assembling a spectacle blind	
Figure 32: Spectacle blind in open position	
Figure 33: Spectacle blind in closed position	
Figure 34: Blind flanges	
Figure 35: Blind flange	
Figure 36: PID Fuel gas scrubber	
Figure 37: Tube dimensions - carbon steel type	
Figure 38: Example of blinding	
Figure 39: Coupling of insulated pipes	
Figure 40: Insulator for flanges	.57

9. SUMMARY OF TABLES

Table 1: The various classes of flanges (TOTAL and ASME)	16
Table 2: The new names for the ANSI flanges	
Table 3: Maximum pressure allowed according to ASME standard B 16, 5	
Table 4: The use of the various classes	20
Table 5: Example of a table with tightening torques	25
Table 6: The main fittings	29
Table 7 : Type of material according to the fluid	35
Table 8: Various thicknesses of a 4" carbon steel pipe	49
Table 9: Document with positions of the blinds	53

Page 62 of 62

